BAC MONO

BAC Mono R on

BAC Mono R design upgrade wheels using generative engineering by AUTODESK on DYMAG carbon rims

Autodesk has worked with BAC in the past, so it was exciting to get back into the driving seat to join forces on the latest generation BAC Mono.

Together, BAC and the Autodesk Research team focused on how generative design could be applied to the wheel, concentrating on the benefits of faster time-to-design, lightweighting, and performance, with different manufacturing methods and materials tested. However, the crucial element of all of the above was to maintain a strong aesthetic similarity to the BAC brand. The tool learned how to provide outcomes that still bore a close resemblance to BAC’s unique design style.

Valuable data was also fed into the generative design tool to inform the results. British wheel manufacturer Dymag provided data from standards testing; a process which certified previous BAC vehicles for road use.

Powered by Fusion 360, generative design uses a combination of artificial intelligence and cloud-computing to create design possibilities which take into account performance criteria and real-world manufacturability requirements, allowing designers to explore thousands of designs in less time than they could deliver a single concept using traditional processes.

The results produced a wheel that was an impressive 35% lighter, weighing 2.2 kg (or 4.85 lbs) per wheel, that could be manufactured traditionally on a CNC mill. It also met stringent structural requirements required for approval and certification in Europe. This was achieved in less time than BAC had ever designed a wheel before.

“Taking away the need to manually redesign a wheel and decide what the geometry should do as a result of FEA software readings is priceless,” said Ian Briggs, design director at BAC. “Generative design algorithms on Fusion 360 do this thousands of times a minute to the point where after only four hours you can have the most optimized solution possible–saving an unbelievable amount of time in the process.”

For a company like BAC, producing cars are as much works of art as they are functional pieces of engineering, so preserving the aesthetic signature of the brand throughout the design process was essential. Autodesk Research collaborated closely with the design team at BAC to understand these aesthetic requirements, and build this understanding into the generative design setup, resulting in a new wheel design which is a natural evolution of the original rather than a radical break in tradition.

“The revolutionary creation of our generative design wheel is something to certainly be celebrated, and it begs the question of what’s possible in the future of the automotive industry using this method,” added Briggs. “As our design journey progresses, we can analyze a number of parts and panels on any car we may create with the ultimate goal of saving more weight and making more organic forms in line with our design DNA.”

Autodesk manufactured the front wheels using 3 and 5 axis machining in its Technology Center in Birmingham, UK. Different materials and manufacturing methods were tested, but aluminum remained as the strongest option, as well as the 3 and 5 axis machining methods to reach the smaller and more narrow parts of the wheel. Dymag also tested these methods and manufactured the rear wheels in its facility. All four wheels were then hand finished by the wheel manufacturer and painted their signature ‘gunmetal grey.’

Contact